موضوع عن محمد بن موسى الخوارزمي طريقتهُ في حل المعادلة الخطية
تلخيص قصير :
طريقة الخوارزمي في حل المعادلات التربيعية الخطية عملت في البداية بخفض لمعادلة لواحدة من ست نماذج قياسية (حيث b وc أرقام صحيحة موجبة):
- ترابيع تساوي الجذور (ax2 = bx)
- ترابيع تساوي عدد (ax2 = c)
- جذور تساوي عدد (bx = c)
- ترابيع وجذور تساوي عدد (ax2 + bx = c)
- ترابيع وعدد تساوي جذور (ax2 + c = bx)
- جذور ورقم تساوي ترابيع (bx + c = ax2)
وبقسمة معامل التربيع باستخدام عمليتين هما الجبر والمقابلة، الجبر هي عملية إزالة الوحدات والجذور والتربيعات السلبية من المعادلة، وذلك بإضافة نفس الكمية إلى كل جانب. فعلى سبيل المثال، x2 = 40x − 4x2 تخفض إلى 5x2 = 40x، والمقابلة هي عملية جلب كميات من نفس النوع لنفس الجانب من المعادلة. فعلى سبيل المثال، x2 + 14 = x + 5 تخفض إلى x2 + 9 = x.
نشر عدة مؤلفين أيضا كتبا ونصوصا تحت اسم كتاب الجبر والمقابلة منهم أبو حنيفة الدينوري وأبو كامل شجاع بن اسلم وعبد الحميد بن ترك وسند بن علي وسهل بن بشر وشرف الدين الطوسي.
وكتب جي جي أوكونر وإي إث روبرتسون في موقع أرشيف ماكتوتر لتاريخ الرياضيات:
«"ربما كانت أحد أهم التطورات التي قامت بها الرياضيات العربية التي بدأت في هذا الوقت بعمل الخوارزمي وهي بدايات الجبر، ومن المهم فهم كيف كانت هذه الفكرة الجديدة مهمة، فقد كانت خطوة ثورية بعيدا عن المفهوم اليوناني للرياضيات التي هي في جوهرها هندسة، الجبر كان نظرية موحدة تتيح الأعداد الكسرية والأعداد اللا كسرية، والمقادير الهندسية وغيرها، أن تتعامل على أنها أجسام جبرية، وأعطت الرياضيات ككل مسارا جديدا للتطور بمفهوم أوسع بكثير من الذي كان موجودا من قبل، وقدم وسيلة للتنمية في هذا الموضوع مستقبلا. وجانب آخر مهم لإدخال أفكار الجبر وهو أنه سمح بتطبيق الرياضيات على نفسها بطريقة لم تحدث من قبل."»
وكتب أر راشد وأنجيلا ارمسترونج:
«نص الخوارزمي يمكن أن ينظر إليه على أنه متميز، ليس فقط من الرياضيات البابلية، ولكن أيضا من كتاب آريثميتيكا " ديوفانتوس، انها لم تعد حول سلسلة من المشاكل التي يجب حلها، ولكن كتابة تفسيرية تبدأ مع شروط بدائية فيها التركيبات يجب أن تعطي كل النماذج الممكنة للمعادلات، والتي تشكل الموضوع الحقيقي للدراسة. من ناحية أخرى، فإن فكرة المعادلة ذاتها تظهر من البداية، ويمكن القول، بصورة عامة، أنها لا تظهر فقط في سياق حل مشكلة، ولكنها تدعو على وجه التحديد إلى تحديد فئة لا حصر لها من المشاكل."»
صفحة من الترجمة اللاتينية، والتي تبدأ بـ"algorizmi dixit" (تعنی "قال الخوارزمي")
علم الحساب

طريقة الخوارزمي في حل المعادلات التربيعية الخطية عملت في البداية بخفض لمعادلة لواحدة من ست نماذج قياسية (حيث b وc أرقام صحيحة موجبة):
- ترابيع تساوي الجذور (ax2 = bx)
- ترابيع تساوي عدد (ax2 = c)
- جذور تساوي عدد (bx = c)
- ترابيع وجذور تساوي عدد (ax2 + bx = c)
- ترابيع وعدد تساوي جذور (ax2 + c = bx)
- جذور ورقم تساوي ترابيع (bx + c = ax2)
وبقسمة معامل التربيع باستخدام عمليتين هما الجبر والمقابلة، الجبر هي عملية إزالة الوحدات والجذور والتربيعات السلبية من المعادلة، وذلك بإضافة نفس الكمية إلى كل جانب. فعلى سبيل المثال، x2 = 40x − 4x2 تخفض إلى 5x2 = 40x، والمقابلة هي عملية جلب كميات من نفس النوع لنفس الجانب من المعادلة. فعلى سبيل المثال، x2 + 14 = x + 5 تخفض إلى x2 + 9 = x.
نشر عدة مؤلفين أيضا كتبا ونصوصا تحت اسم كتاب الجبر والمقابلة منهم أبو حنيفة الدينوري وأبو كامل شجاع بن اسلم وعبد الحميد بن ترك وسند بن علي وسهل بن بشر وشرف الدين الطوسي.
وكتب جي جي أوكونر وإي إث روبرتسون في موقع أرشيف ماكتوتر لتاريخ الرياضيات:
«"ربما كانت أحد أهم التطورات التي قامت بها الرياضيات العربية التي بدأت في هذا الوقت بعمل الخوارزمي وهي بدايات الجبر، ومن المهم فهم كيف كانت هذه الفكرة الجديدة مهمة، فقد كانت خطوة ثورية بعيدا عن المفهوم اليوناني للرياضيات التي هي في جوهرها هندسة، الجبر كان نظرية موحدة تتيح الأعداد الكسرية والأعداد اللا كسرية، والمقادير الهندسية وغيرها، أن تتعامل على أنها أجسام جبرية، وأعطت الرياضيات ككل مسارا جديدا للتطور بمفهوم أوسع بكثير من الذي كان موجودا من قبل، وقدم وسيلة للتنمية في هذا الموضوع مستقبلا. وجانب آخر مهم لإدخال أفكار الجبر وهو أنه سمح بتطبيق الرياضيات على نفسها بطريقة لم تحدث من قبل."»
وكتب أر راشد وأنجيلا ارمسترونج:
«نص الخوارزمي يمكن أن ينظر إليه على أنه متميز، ليس فقط من الرياضيات البابلية، ولكن أيضا من كتاب آريثميتيكا " ديوفانتوس، انها لم تعد حول سلسلة من المشاكل التي يجب حلها، ولكن كتابة تفسيرية تبدأ مع شروط بدائية فيها التركيبات يجب أن تعطي كل النماذج الممكنة للمعادلات، والتي تشكل الموضوع الحقيقي للدراسة. من ناحية أخرى، فإن فكرة المعادلة ذاتها تظهر من البداية، ويمكن القول، بصورة عامة، أنها لا تظهر فقط في سياق حل مشكلة، ولكنها تدعو على وجه التحديد إلى تحديد فئة لا حصر لها من المشاكل."»
صفحة من الترجمة اللاتينية، والتي تبدأ بـ"algorizmi dixit" (تعنی "قال الخوارزمي")
علم الحساب
This article is issued from Wikibot.